Monatshefte für Chemie Chemical Monthly © Springer-Verlag 2002 Printed in Austria # Reaction of N-Acyl-α-triphenylphosphonio-α-amino Acid Esters with Organic Bases: Mechanism of the Base-Catalyzed Nucleophilic Substitution of the Triphenylphosphonium Group # Roman Mazurkiewicz* and Mirosława Grymel Institute of Organic Chemistry and Technology, Silesian Technical University, PL-44100 Gliwice, Poland **Summary.** Reactions of N-acyl- α -triphenylphosphonio- α -amino acid methyl esters with organic bases (triethylamine or DBU) were investigated as the crucial step of the base-catalyzed displacement of the triphenylphosphonium group by nucleophiles. It was proved that N-acyl- α -triphenylphosphonioglycinates are transformed to an equilibrium mixture of the corresponding N-acyliminoacetates and N-acyl- α -triphenylphosphoranylidene glycinates by bases. In the case of N-acyl- α -triphenylphosphonio- α -amino acid esters with quaternary α -carbon, the α -substituted homologues of the N-acyliminoacetates were detected to be the only primary reaction product which, however, can undergo further tautomerization to the corresponding α,β -dehydro- α -amino acid derivatives. In both these cases the reaction of N-acyl- α -triphenylphosphonio- α -amino acid esters with nucleophiles proceeds via the addition of a nucleophile to the activated C=N double bond of the N-acylimino intermediate. **Keywords.** N- α -Triphenylphosphonioglycinates; Nucleophilic substitution; Synthetic equivalents of α -amino acid α -cations; Glycine functionalization. ## Introduction Since the pioneering investigations of *Ben-Ishai et al.* [1] on the first synthetic equivalents of glycine α -cations, the important problem of synthesizing α -amino acids by a new bond formation between the α -position of an α -amino acid electrophilic equivalent and a nucleophile has attracted the attention of organic chemists. In the course of the last twenty five years many synthetic equivalents of α -amino acid α -cations have been introduced [2, 3]. Recently, we have developed and reported convenient and effective syntheses of N-acyl- α -triphenylphosphonio glycinates (2; [2]) and their α -alkyl substituted analogues (4; [4]) from 4-triphenylphosphoranylidene-5(4H)-oxazolones 1 or 4-alkyl-4-triphenylphosphonio-5(4H)-oxazolone iodides 3. We have also described ^{*}Corresponding author. E-mail: romanm@zeus.polsl.gliwice.pl MeOH + HBF₄ or 1. RCOVMeCN 2. MeOH 2 $$X = BF_4$$ or 1 2a: $R = t$ -Bu, $X = 1$ 2b: $R = Ph$, $X = 1$ Ph₃P R 1 Ph₃P R NH COOMe X^{Θ} $X = BF_4$ or 1 a simple method for the displacement of the triphenylphosphonium group in these compounds by a variety of oxygen, sulfur, nitrogen, and carbon nucleophiles [2–4] in the presence of triethylamine or DBU, demonstrating that the α -triphenylphosphonio- α -amino acid derivatives 2 and 4 may be considered to be new interesting synthetic equivalents of α -amino acid α -cations. The described transformations enable an easy functionalization of the glycine α -position with nucleophiles or even its double functionalization with electrophiles (alkyl halides) and nucleophiles (Scheme 1). In the present paper we report our investigations on the mechanism of the base-catalyzed displacement of the triphenylphosphonium group in phosphonium salts 2 and 4 by nucleophiles. # **Results and Discussion** Trying to explain the mechanism of the base-catalyzed displacement of the triphenylphosphonium group of N-acyl- α -triphenylphosphonio- α -amino acid esters by nucleophiles, we examined in detail their reaction with triethylamine or DBU in CD_3CN at 25°C. We monitored changes of the composition of the reaction mixtures as a function of the reaction time using IR and NMR spectroscopy. N-Acyl- α -triphenylphosphonioglycinates **2** have been obtained for the first time from α -bromoglycinates and triphenylphosphine by *Kober* and *Steglich* in 1983 [5]. They found that ethyl N-benzoyl- α -triphenylphosphonioglycinate bromide is converted into diethyl 2,3-bis-(benzoylamino)-fumarate in the presence of triethylamine. The authors did not examine the reaction of N-benzoyl- α -triphenylphosphonioglycinate with nucleophiles. In order to explain the formation of 2,3-bis-(bezoylamino)-fumarate they assumed that N-benzoyl- α -triphenylphosphonioglycinate is converted to a mixture of the corresponding ylide (ethyl N-benzoyl- α -triphenylphosphoranylidene glycinate) and ethyl N-benzoyliminoacetate upon action of triethylamine at the first step of the reaction. The condensation of the ylide with the *N*-benzoyliminoacetate results in 2,3-bis-(benzoylamino)-fumarate. As we observed in our first experiment, the treatment of methyl N-pivaloyl- α -triphenylphosphonioglycinate tetrafluoroborate with triethylamine resulted in an immediate disappearance of the starting ester. A detailed analysis of spectroscopic data led to the conclusion that the reaction mixtures contained two new compounds which were assigned tentatively as the corresponding ylide and N-acyliminoacetate analogous to those proposed by Kober and Steglich [5]. In addition, the reaction mixtures also contained triphenylphosphine, triethylamine tetrafluoroborate, and the previously isolated and identified dimethyl 2,3-bis-(pivaloylamino)-fumarate. We were able to assign the most characteristic 1H and ^{13}C NMR signals of the ylide 6a and N-pivaloyliminoacetate 5a (Table 1). Integration of the methoxy resonances in the 1H NMR spectra allowed to estimate the concentration of the components of the reaction mixture (Fig. 1). Evidently, 6 is formed as a result of the deprotonation at the α -carbon, whereas deprotonation at the nitrogen and cleavage of triphenyl-phosphine results in the formation of N-pivaloyliminoacetate 5a. Attempts to isolate the ylide **6a** and *N*-acyliminoacetate **5a** from the reaction mixture by column chromatography failed, probably because of the instability of these compounds. Nevertheless, we were able to prove the formation of the ylides **6a**, **b** by trapping them in a *Wittig* reaction with methyl trifluoropyruvate. The yield of the *Wittig* reaction product **10a** was much higher than expected from the highest detected concentration of **6a** in the reaction mixture. On the other hand, extraordinary Table 1. ¹H and ¹³C NMR data of 5a, 6a, 7a, 8a, and 9a (CD₃CN) | | | | | ¹ H NMR (δ/ppm) | n) 13 C NMR (δ/ppm , J/Hz) | | | | | | | | | | | | |------------------------|------|------|-----------------|---|--|--------------------|---------------|-------|------|---------------|-------|---------------|-------|------------------|------------------|--| | | R | E | CR^1R^2 | | CONH COOMe C=P N=C OMe (C ₆ H | | $I_5)_3P =$ | | R | | Other | | | | | | | | | | | | | | | | | C_1 | C_2 | C_3 | C_4 | CMe ₃ | CMe ₃ | | | 5a | t-Bu | ı – | - | 3.03 (s, 3H, OCH ₃),
0.80 (s, 9H, <i>t</i> -Bu) ^a | 166.1 ^b | 163.2 ^b | - | 183.6 | 49.4 | - | - | - | - | 38.88 | 27.77 | | | 6a | t-Bu | 1 – | - | 6.65 (s, 1H, NH),
3.44 (s, 3H, OCH ₃),
0.79 (s, 9H, <i>t</i> -Bu) ^c | 180.7 | 171.3
34.9 | 48.2
156.2 | | 50.4 | 127.3
90.9 | | 129.5
12.2 | | 38.80 | 27.66 | - | | 7a ^d | t-Bu | 1 – | - | 3.71 (s, 6H, OCH ₃),
1.20 (s, 18H, <i>t</i> -Bu) ^a | 178.2 | 164.8 | - | - | 53.1 | - | - | - | - | 39.84 | 27.36 | 125.4 (>C=) | | 8a | t-Bu | ı Me | - | 3.79 (s, 3H, OCH ₃),
2.18 (s, 3H, CH ₃),
1.17 (s, 9H, <i>t</i> -Bu) | 157.3 ^b | 163.0 ^b | - | 193.3 | 53.7 | - | - | - | - | 41.3 | 27.1 | 21.3 (Me) | | 9a ^d | t-Bu | 1 – | CH ₂ | 8.07 (s, 1H, NH),
6.40 (s, 1H, =CH ₂),
5.75 (s, 1H, =CH ₂),
3.80 (s, 3H, OCH ₃),
1.21 (s, 9H, <i>t</i> -Bu) | 177.8 | 165.4 | _ | _ | 53.5 | - | - | - | _ | 40.3 | 27.5 | 132.9 (<i>C</i> =CH ₂)
108.1 (C= <i>C</i> H ₂) | ^a The signal of the NH group is hidden under the signals of triphenylphosphine; ^b assignments may be interchanged; ^c signals of the ylide Ph₃P group are hidden under the signals of triphenylphosphine; ^d signals identified and assigned by comparison with the spectrum of the isolated compound Fig. 1. Conversion of *N*-pivaloyl- α -triphenylphosphonioglycinate **2a** to the corresponding α -triphenylphosphoranylidene glycinate **6a**, iminoacetate **5a**, and their condensation product **7a** under the influence of Et₃N (*cf.* Scheme 2; R = t-Bu) high yields of products of the triphenylphosphonium group displacement were obtained, multiples of the amount that would follow from the highest estimated concentration of N-pivaloyliminoacetate $\mathbf{5a}$ in the reaction mixture [2–4]. These two results clearly indicated an equilibrium between N-acyliminoacetate and ylide. The results of an analogous reaction with DBU were very similar, although both ^{1}H and ^{13}C NMR spectra of the reaction mixture were difficult to interpret because of the overlapping signals of the protonated DBU. To the best of our knowledge, N-acyl- α -triphenylphosphonio- α -amino acid esters with quaternary α -carbon are hitherto unknown compounds. Using the methodology described above, we investigated the reaction of N-pivaloyl- α -triphenylphosphonioalanine methyl ester with triethylamine. Again triethylamine causes the disappearance of the ester in less than two minutes. However, as expected, α -(N-pivaloylimino)-propionate $\mathbf{8a}$ was detected to be the only primary reaction product. If esters $\mathbf{8}$ possess a hydrogen at the β -position, they can undergo a slow tautomerization to the corresponding α , β -dehydro- α -amino acid derivative $\mathbf{9}$ which can be isolated in good yields (57–65%). The tautomerization can be monitored conveniently by IR as well as 1 H and 13 C NMR spectroscopy. Possible mechanisms of the nucleophilic displacement of the triphenylphosphonium group in N-acyl- α -triphenylphosphonio- α -amino acid esters with tertiary or quaternary α -carbons are presented in Schemes 2 and 3. We assume that in both these cases the crucial step of the reaction consists in the addition of a nucleophile to the activated C=N double bond of the N-acylimino intermediate 5 or 8. Therefore, the investigated mechanism can be described as an elimination-nucleophilic addition process. N-Acyliminoacetates 5 have been considered to be unstable reactive intermediates in reactions of N-acyl- α -chloroglycinates or N-acyl- α -bromoglycinates with nucleophiles initiated by triethylamine [6] or diazomethane [7] so far in the literature. N-Acyl- α -triphenylphosphonio- α -amino acid esters with tertiary and quaternary α -carbons behave in a different way if no nucleophilic agent is present in the reaction mixture or if it is of low reactivity. In the first case, the ylide acts as a nucleophile; its slow condensation with N-acyliminoacetate yields the dimer 7 (Scheme 2). In the second case, as already mentioned, the corresponding N-acylimino intermediate can undergo a slow tautomerization to the α , β -dehydro- α -amino acid derivative 9, provided that it bears a hydrogen atom at the β -position (Scheme 3). Scheme 3 # **Experimental** Melting points, determined in capillary tubes, are uncorrected. IR spectra were recorded on a Zeiss Specord M 80 spectrophotometer; the measurements were carried out using 0.075 mm cells. 1 H, 13 C, and 31 P NMR spectra were recorded in CDCl₃ or CD₃CN on a Varian Unity Inova-300 spectrometer operating at 300, 75.5, and 121.4 MHz; chemical shifts are quoted relative to internal *TMS* (1 H, 13 C) or external H₃PO₄ (31 P). Kieselgel 60 (Merck, 0.063–0.200 mm) was used for column chromatography. Elemental analyses (C, H, N, P) proved to be in satisfactory agreement (\pm 0.4%) with the calculated values. Methyl *N*-pivaloyl- α -triphenylphosphonioglycinate iodide and methyl *N*-benzoyl- α -triphenylphosphonioglycinate iodide (**2a** and **2b**) as well as 2-*t*-butyl-4-methyl-4-triphenylphosphonio-5(4*H*)-oxazolone iodide and 2-benzoyl-4-methyl-4-triphenylphosphonio-5(4*H*)-oxazolone iodide (**3a** and **3b**) were synthesized as previously described [2, 4]. N-Pivaloyl-α-triphenylphosphonioalanine methyl ester iodide (4a; C₂₇H₃₁INO₃P) A solution of 5.4 g **3a** (10 mmol) in 20 cm³ MeOH was stirred at 20°C for 2.5 h. The excess of MeOH was evaporated, and the crude product was dissolved in 15 cm³ CH₃CN and precipitated with 30 cm³ diethyl ether to give 4.8 g (84%) of crystalline product. M.p.: $132.5-134^{\circ}\text{C}$; ${}^{1}\text{H NMR}$: $\delta = 8.72$ (d, 1H, J = 4.9 Hz, NH), 7.85-7.52 (m, 15H, Ph₃P $^{+}$), 3.83 (s, 3H, OMe), 2.27 (d, 3H, J = 19.0 Hz, CH₃–C–P $^{+}$ Ph₃), 0.94 (s, 9H, t-Bu) ppm; ${}^{13}\text{C NMR}$: $\delta = 170.1$ (d, J = 0.5 Hz, CONH), 66.1 (d, J = 60.2 Hz, C_{α} –P $^{+}$), 180.3 (d, J = 12.2 Hz, COOMe), 54.1 (OMe), 120.1 (d, J = 80.5 Hz, Ph₃P, C₁), 135.5 (d, J = 9.1 Hz, Ph₃P, C₂), 129.5 (d, J = 12.4 Hz, Ph₃P, C₃), 134.2 (d, J = 0.5 Hz, Ph₃P, C₄), 38.4 (CMe₃), 27.1 (CMe₃), 28.3 (Me) ppm; 31P NMR: $\delta = 51.0$ ppm; IR: $\nu = 3230$ m, 1764 s, 1732 s, 1660 s, 1512 s cm $^{-1}$. N-Benzoyl-α-triphenylphosphonioalanine methyl ester iodide (4b; C₂₉H₂₇INO₃P) A solution of $5.6 \,\mathrm{g}$ **3b** (10 mmol) in $20 \,\mathrm{cm}^3$ MeOH was stirred at $20^{\circ}\mathrm{C}$ for 1 h. The excess of MeOH was evaporated, and the crude product was dissolved in $13 \,\mathrm{cm}^3$ CH₃CN and precipitated with $26 \,\mathrm{cm}^3$ diethyl ether to give $3.9 \,\mathrm{g}$ (66%) of the crystalline product. M.p.: 144–145°C; ¹H NMR: δ = 9.53 (d, 1H, J = 3.1 Hz, NH), 7.92–7.29 (m, 20H, Ph, Ph₃P⁺), 3.85 (s, 3H, OMe), 2.36 (d, 3H, J = 19.0 Hz, CH₃–C–P⁺Ph₃) ppm; ¹³C NMR: δ = 168.5 (d, J = 0.5 Hz, CONH), 66.7 (d, J = 58.1 Hz, C_{α}–P⁺), 169.9 (d, J = 12.2 Hz, COOMe), 54.2 (OMe), 119.8 (d, J = 81.2 Hz, Ph₃P, C₁), 135.5 (d, J = 8.8 Hz, Ph₃P, C₂), 129.6 (d, J = 12.4 Hz, Ph₃P, C₃), 134.4 (d, J = 0.5 Hz, Ph₃P, C₄), 132.7, 129.9, 128.7, 128.1 (Ph), 28.2 (Me) ppm; ³¹P NMR: δ = 51.8 ppm; IR: ν = 3168 m, 1773 s, 1729 s, 1662 s, 1520 s cm⁻¹. Reactions of N-acyl- α -triphenylphosphonio- α -amino acid esters with triethylamine or DBU To a stirred suspension of 1 mmol N-acyl- α -triphenylphosphonio- α -amino acid ester **2** or **4** in 4 cm³ CD₃CN, 0.17 cm³ triethylamine (1.25 mmol) or 0.19 cm³ DBU (1.25 mmol) were added at 25°C. The composition of the reaction mixtures as a function of time was monitored by IR and NMR spectroscopy. Dimethyl 2,3-bis-(acylamino)-fumarates 7; general procedure To a stirred suspension of 1 mmol methyl N-acyl- α -triphenylohosphonioglycinate iodide in 4 cm³ CH₂Cl₂, 0.17 cm³ triethylamine (1.25 mmol) were added at room temperature. After 3 h the solvent was evaporated, and the residue was purified by column chromatography (ethyl acetate:benzene = 1:5). The crude product was recrystallized from benzene:hexane = 3:1. Dimethyl 2,3-bis-(pivaloylamino)-fumarate (7a; C₁₆H₂₆N₂O₆) Yield: 89%; m.p.: 164–166°C; ¹H NMR: δ = 8.72 (s, 2H, NH), 3.84 (s, 6H, OMe), 1.26 (s, 18H, *t*-Bu) ppm; ¹³C NMR: δ = 176.5 (CONH), 163.3 (COOMe), 121.5 (=C-), 52.0 (OMe), 38.6 (CMe₃), 26.2 (CMe₃) ppm; IR: ν = 3540 m, 1742 vs, 1684 vs, 1630 s cm⁻¹. Dimethyl 2,3-bis-(benzoylamino)-fumarate (7b; C₂₀H₁₈N₂O₆) Yield: 85%; m.p.: 185–187°C; ¹H NMR: δ = 9.60 (s, 2H, NH), 7.96–7.48 (m, 10H, Ph), 3.90 (s, 6H, OMe) ppm; ¹³C NMR: δ = 165.5 (CONH), 164.2 (COOMe), 122.6 (= C-), 53.2 (OMe), 132.8, 132.4, 128.8, 127.6 (Ph) ppm; IR: ν = 3540 m, 1741 vs, 1676 vs, 1632 s cm⁻¹. Wittig reaction of methyl N-acyl- α -triphenylphosphonioglycinate iodides with methyltrifluoropyruvate in the presence of triethylamine To a stirred suspension of 1 mmol methyl N-pivaloyl- α -triphenylphosphonioglycinate tetrafluoroborate or N-benzoyl- α -triphenylphosphonioglycinate iodide in 2.5 cm 3 CH $_3$ CN, a solution of 0.17 cm 3 methyl trifluoropyruvate (1.5 mmol) in 1.5 cm 3 CH $_3$ CN and 0.17 cm 3 triethylamine (1.25 mmol) was added at room temperature. After 6 h the solvent was evaporated, and the residue was purified by column chromatography (ethyl acetate:benzene = 1:5). The crude product was recrystallized from a mixture of benzene and hexane. 2-Pivaloylamino-3-trifluormethylbutendioic acid dimethyl ester (10a; C₁₂H₁₆F₃NO₅) Yield: 95%; m.p.: 79–81°C; ¹H NMR: δ = 11.90 (s, 1H, NH), 3.93 (s, 3H, OMe), 3.89 (s, 3H, OMe), 1.29 (s, 9H, *t*-Bu) ppm; ¹³C NMR: δ = 176.6 (CONH), 167.0 (COOMe), 162.4 (=C(CO)OMe), 147.5 (q, J_{C-F} = 3.4 Hz, NHC=C), 122.5 (q, J_{C-F} = 269.8 Hz, CF₃), 99.0 (q, J_{C-F} = 33.2 Hz, CF₃C=), 53.4 (OMe), 53.0 (OMe), 40.0 (CMe₃), 27.0 (CMe₃) ppm; IR: ν = 3230 m, 1755 vs, 1721 s, 1682 s, 1605 vs cm⁻¹. 2-Benzoylamino-3-trifluormethylbutendioic acid dimethyl ester (10b; C₁₄H₁₂F₃NO₅) Yield: 46%; m.p.: 101.5–103.5°C; ¹H NMR: δ = 12.60 (s, 1H, NH), 8.00–7.42 (m, 5H, Ph), 4.00 (s, 3H, OMe), 3.93 (s, 3H, OMe) ppm; ¹³C NMR: δ = 164.1 (CONH), 167.3 (COOMe), 133.8, 131.3, 129.2, 128.1 (Ph), 162.2 (=C(CO)OMe), 147.6 (q, J_{C-F} = 3.4 Hz, NHC=C), 122.5 (q, J_{C-F} = 270.0 Hz, CF₃), 99.6 (q, J_{C-F} = 33.4 Hz, CF₃C=), 53.6 (OMe), 53.1 (OMe) ppm; IR: ν = 3600 br, 1758 vs, 1711 s, 1682 s, 1609 vs cm⁻¹. Methyl α -(N-acylamino)-acrylates **9**; general procedure To a stirred suspension of 1 mmol methyl *N*-acylamino- α -triphenylphosphoniopropionate iodide in 4 cm³ CH₃CN, 5 mg hydroquinone and 0.17 cm³ triethylamine (1.25 mmol) were added at room temperature. After 2 h the solvent was evaporated, and the residue was purified by column chromatography (ethyl acetate:benzene = 1:5). Methyl α -(N-pivaloylamino)-acrylate (9a; C₉H₁₅NO₃) Yield: 57%; resin; ¹H NMR: δ = 8.07 (s, 1H, NH), 6.62 (s, 1H, =CH₂), 5.87 (s, 1H, =CH₂), 3.86 (s, 3H, OCH₃), 1.27 (s, 9H, *t*-Bu) ppm; ¹³C NMR: δ = 177.3 (CONH), 165.0 (COOMe), 131.0 (>*C*=CH₂), 108.3 (>*C*=*C*H₂), 53.0 (OMe), 39.9 (CMe₃), 27.4 (*CMe*₃) ppm; IR: ν = 3420 m, 1724 s, 1682 vs, 1640 m cm⁻¹. *Methyl* α -(*N-benzoylamino*)-acrylate (**9b**; $C_{11}H_{11}NO_3$) Yield: 65%; resin; ¹H NMR: δ = 8.56 (s, br, 1H, NH), 7.85–7.45 (m, 5H, Ph), 6.80 (d, 1H, J = 1.5 Hz, =CH₂), 6.00 (d, 1H, J = 1.5 Hz, =CH₂), 3.89 (s, 3H, OCH₃) ppm; ¹³C NMR: δ = 165.8, 164.8 (CONH and COOMe), 134.3 132.1, 128.8, 127.0 (Ph), 132.1 (>C=CH₂), 109.0 (>C=CH₂), 53.1 (OMe) ppm; IR: ν = 3410 m, 1720 s, 1680 vs cm⁻¹. ## Acknowledgements Financial help by the Polish State Committee for Scientific Research (Grant No 3T09A 11416) is gratefully acknowledged. ### References - Zoller U, Ben-Ishai D (1975) Tetrahedron 31: 863; Ben-Ishai D, Sataty I, Bernstein Z (1976) ibid 32: 1571 - [2] Mazurkiewicz R, Grymel M (1999) Monatsh Chem 130: 597 - [3] Mazurkiewicz R, Grymel M (2000) Phosphorus, Sulfur and Silicon 164: 33 - [4] Mazurkiewicz R, Grymel M, Brachaczek A, Heczko K (1998) XVIIIth European Colloquium on Heterocyclic Chemistry, Rouen, France, B-33; Mazurkiewicz R, Pierwocha A, Grymel M (1998) ibid, B-34 - [5] Kober R, Steglich W (1983) Liebigs Ann Chem 599 - [6] Kober R, Papadopoulos K, Miltz W, Enders D, Steglich W (1985) Tetrahedron 41: 1693; Munster P, Steglich W (1987) Synthesis 3: 223; Bretschneider T, Miltz W, Munster W, Steglich W (1988) Tetrahedron 44: 5403 - [7] Bernstein Z, Ben-Ishai D (1977) Tetrahedron 33: 881 Received October 31, 2001. Accepted (revised) December 17, 2001